skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thanippuli_Arachchi, Dimuthu H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a two-step silica-encapsulation procedure to optimize both the optical efficiency and structural robustness of 5,5′,6,6′-tetrachloro-1,1′-diethyl-3,3′-di(4–sulfobutyl)-benzimidazolocarbocyanine (TDBC), a two-dimensional sheet-like J-aggregate. We report a fluorescence quantum yield of ~98%, the highest quantum yield recorded for any J-aggregate structure at room temperature, and a fast, emissive lifetime of 234 ps. Silica, as an encapsulating matrix, provides optical transparency, chemical inertness, and robustness to dilution, while rigidifying the J-aggregate structure. Our in situ encapsulation process preserves the excitonic structure in TDBC J-aggregates, maintaining their light absorption and emission properties. The homogeneous silica coating has an average thickness of 0.5-1 nm around J-aggregate sheets. Silica encapsulation permits extensive dilutions of J-aggregates without significant disintegration into monomers. The narrow absorbance and emission line widths exhibit further narrowing upon cooling to 79 K, which is consistent with J-type coupling in the encapsulated aggregates. This silica TDBC J-aggregate construct signifies (1) a bright, fast, and robust fluorophore system, (2) a platform for further manipulation of J-aggregates as building blocks for integration with other optical materials and structures, and (3) a system for fundamental studies of exciton delocalization, transport, and emission dynamics within a rigid matrix. 
    more » « less